

October 1, 2021

HAGUE WEB SERVICES

page 2

CONTENTS

Hague Web Services ... 1

Contents .. 2

Introduction ... 3

Scope .. 3

General ... 3

Authentication and security ... 3

API security ... 3

Authentication to HWS .. 4

API description .. 5

Sending indirect applications and Decisions to Hague ... 5

Querying the status of a particular Service Request (SR) .. 6

Retrieval of a Bulletin .. 7

Retrieval of a Confidential Copy .. 8

APPENDIX A: Client for OpenSSL key pair generation

APPENDIX B: WIPO ICTD API Request Access Form

APPENDIX C: Snippet to get an Access Token from WIPO Dev OpenAM

APPENDIX D: Public Hague Platform API

page 3

INTRODUCTION

SCOPE

This document is an introduction to the Hague Web Services (HWS), a machine-to-machine
interface (M2M) to the Hague System (Hague).

GENERAL

HWS are a secure, highly-available, reliable, HTTPS/REST API-based protocol for exchanging
data with the Hague System. They can be used for sending or receiving data.

HWS can be used to:

 Send decisions or indirect applications
 Check import status
 Query processing status
 Retrieve Hague Bulletins.
 Retrieve confidential copies (Examining IP Offices only).

HWS is the preferred Hague data exchange channel. IPOs are therefore strongly encouraged
to use the HWS from the start. Offices already exchanging data with Hague via EDI/paper/other
channels are encouraged to migrate to the HWS.

AUTHENTICATION AND SECURITY

API SECURITY

The HWS API is designed for machine-to-machine communication with confidential payloads.

The authentication is based on an asymmetric key signature that is part of the Financial-grade
API Security Profile 1.0. The Financial-grade API security profile can be applied to APIs in any
market area that requires a higher level of security than provided by standard OAuth or OpenID
Connect.This means that it has an advanced security profile of OAuth that is suitable for
protecting APIs with high inherent risk.

KEY PAIR GENERATION AND CLIENT ID PROVISIONING

The diagram below shows the end-to-end process to register an API client id and public key to
WIPO as well as the public IP address of the client application.

Office Actions:

1. Generate a pair of public and private keys (see Appendix A: Client for OpenSSL
key pair generation).

2. Generate the x509 certificate using the public key.

3. Request access to the HWS by sending an email to hague.it@wipo.int including:

(a) completed WIPO form (see Appendix B: APPENDIX B: WIPO ICTD API
Request Access Form);

(b) x509 certificate.

page 4

WIPO Actions:

1. After receipt of the above, generate the client ID.

2. Assign/link the public key to the client ID.

3. Whitelist the IP address.

4. Configure the HWS to authorize requests to the client ID.

5. Confirm the client ID to the IP Office.

AUTHENTICATION TO HWS

Once the client ID, public key and public IP address is registered with WIPO, and the HWS
services configured, the IP Office is ready to use the API.

The diagram below shows the interaction:

1. HTTPS request to the Auth0 tenant with client ID and JWT token signed by the
private key. Note: the request must come from the whitelisted IP.

2. HTTPS request is validated and the JWT access token generated.

3. On success, the JWT access token is returned with a one-hour expiration.

4. Subsequent calls to the HTTPS endpoints within the expiration window can be
performed using the same JWT access token.

page 5

API DESCRIPTION

The HWS API implements the following REST endpoints:

1. Sending indirect applications and decisions to Hague (POST /request).

2. Check import status for an indirect application or decision sent (GET
/request/import) .

3. Querying the status of a particular Service Request (SR) (GET
/request/serviceRequestId).

4. Retrieval of a Bulletin (GET /publication/bulletin/weekId).

5. Retrieval of a Confidential Copy (GET /publication/copy/confidential/weekId).

Full details about HWS API (parameters, responses, etc.) can be found in Appendix D:
APPENDIX D: Public Hague Platform API.

All payloads are based on the XML standard in use at WIPO, namely ST.96. Full details about
ST.96 v4.0, and the XSDs, can be found at https://www.wipo.int/standards/en/st96/v4-0/. Minor
extensions specifically required for web services are in the process of being standardized.

Note: There is an endpoint called pingMe that can be used for checking connectivity between
both the client side and HWS. It has no functionality, but is made available for technical testing
and validation purposes.

Sending indirect applications and Decisions to Hague (POST /request)

Sending applications and decisions to Hague is done through a POST request, where the
payload is the import package (see below).

An import ID per package is returned on success, meaning that that the import package was
received and will be processed by the IB.

This package import ID can later be used to retrieve the Service Request Number (GET
request/import), and in turn the SRN can be used to retrieve the request status (GET request).

page 6

An application and decision request payload is a single ZIP file containing ST.96 XML and
documents and images.

 These files must be located in the relative path as indicated in the XML.

 A ZIP file (therefore, a request payload) must contain only one application or one
decision.

 A payload cannot contain more than one XML file.

 Samples can be found at ftp://ftpird.wipo.int/ST96_V_4_0_test/import-packages-
4.0.zip.

IPOIPO WIPO

POST /request

importId

GET /request/import/{importId}

status

Querying the status of a particular Service Request (GET request/serviceRequestId)

After the package is imported in to the Hague system, a transaction is called a Service Request
(SR) and is attributed an SRN (SR number). This SRN can be retrieved through the GET
request/import endpoint (see above).

Once the SRN is available then the request status can be retrieved using the request endpoint.

Status types are:

 Undefined

 Processing

 Pending Regularization

 Registered

 Abandoned

 Cancelled

As a response to querying the status of a SR, the Hague web services send back an ST.96
payload comprising:

 Request ID

 Processing status

page 7

 SRN

 IRN (International Registration Number)

 when relevant, Expected publication date.

IPOIPO WIPO

GET /request/{serviceRequestId}

SR status

Retrieval of a Bulletin (GET /publication/bulletin/weekId)

Bulletins are issued by the IB weekly, typically on a Friday night (Central European Time).
These can be requested at any time from the moment they are generated. Where the weekId
parameter format is yyyyww.

The response payload contains a ZIP file with the following contents:

 the Bulletin bibliographic data as an ST.96 file;

 folders of images corresponding to the included registrations or image corrections.

As an example, Bulletins payloads (confidential copies have the same architecture) can be
found at ftp://ftpird.wipo.int /ST96_V_4_0.

IPOIPO WIPO

GET /publication/bulletin/{weekId}

Bulletin

page 8

Retrieval of a Confidential Copy (GET /publication/copy/confidential/weekId)

Confidential copies have the same architecture as Bulletins.

Confidential copies are issued by the IB weekly, typically on a Friday night (Central European
Time). These can be requested at any time from the moment they are generated. Where the
weekId parameter format is yyyyww.

The response payload contains a ZIP file with the following contents:

 the confidential copy bibliographic data as an ST.96 file;

 folders of images corresponding to the included registrations or image corrections.

IPOIPO WIPO

GET /publication/copy/confidential/{weekId}

Confidential copy

APPENDIX A: CLIENT FOR OPENSSL KEY PAIR GENERATION

Generate a private / public asymmetric key pair and a x509 certificate for WIPO machine-to-
machine registration.

Generate artifacts for WIPO OIDC enrolment

#!/bin/bash

Set the environment
PRIVATE_KEY_ES256=hague4offices_private.pem
PUBLIC_KEY_ES256=hague4offices_public.pem
CLIENT_NAME=DAS

Generates the ES256 keys
openssl ecparam -genkey -name prime256v1 -noout -out "${PRIVATE_KEY_ES256}"

Extracts the public key
openssl ec -in "${PRIVATE_KEY_ES256}" -pubout -out "${PUBLIC_KEY_ES256}"

Generates an x509 certificate
CERT_KEY_ES256=es256_cert.pem
OPENSSL_CONF=./openssl.cnf
CERT_CN="${CLIENT_NAME} private_key_jwt authentication"

Build the certificate config file
printf '[req]\n' > "${OPENSSL_CONF}"
printf 'prompt = no\n' >> "${OPENSSL_CONF}"
printf 'distinguished_name = req_distinguished_name\n' >> "${OPENSSL_CONF}"
printf '[req_distinguished_name]\n' >> "${OPENSSL_CONF}"
printf 'CN = %s\n' "${CERT_CN}" >> "${OPENSSL_CONF}"

Creates the x509 certificate
openssl req -x509 -new -config "${OPENSSL_CONF}" -key "${PRIVATE_KEY_ES256}" -out
"${CERT_KEY_ES256}"

1. Send es256_cert.pem to WIPO for Hague Webservices access configuration
(hague4offices_private.pem should always be kept secret and never shared).

2. Wait for the Client Id and scope communicated back by WIPO after the configuration.

3. Test the communication using the Hague-provided test client application (link to be
confirmed).

APPENDIX B: WIPO ICTD API REQUEST ACCESS FORM

The forms below are draft forms from WIPO. Please note that the final version of this form is
pending and will be confirmed (01/09/2021).

Please fill in this form to provide general information about the context.

General information

Request Type? Creation request Update request

Describe the updated information1 Contact information
Client IP/IP range
Certificate
Scopes

Environment2 Production

API Application Name

Application Description

API URL(s)

Application Business Owner

Application Business Owner Mail3

Application Technical Contact Name

Application Technical Contact Email4

Who will access the application? Internal people External people

How Api is protected? Using Access Token acquired via Oauth 2 Client
Credentials flow

1 Please provide this information only in case of an update request.
2 Please select an environment.
3 Will be used for notification when a deployment of an Oauth2 Provider component is planned in production

and could have an impact on the application.
4 Will be used for notification when a deployment of an Oatuh2 provider component is planned in production

and could have an impact on the application.

Appendix B, page 2

Please fill in this form to provide information about the Client:

API protection using OAuth2

Client ID Will be provided by WIPO

Client Type Confidential

Supported scopes
(optional)

By default profile

CERTIFICATE (X509V3 –
ES256)

CLIENT IP/IP RANGE

Client Authentication
method

private_key_jwt
(the client sends its credentials as a JWT)

APPENDIX C: SNIPPET TO GET AN ACCESS TOKEN FROM WIPO DEV OPENAM

The bash script below is an example of WIPO authentication request using the IPO private key:

#!/bin/bash
PRIVATE_KEY_ES256=es256_private.pem
CLIENT_ID=das-api-auth
SCOPE="das-api/das-access"
ISSUER="https://logindev.wipo.int/am/oauth2"

https://logindev.wipo.int/am/oauth2/.well-known/openid-configuration
OIDC_CONFIG_JSON=$(curl -k "${ISSUER}/.well-known/openid-configuration")

Generic way to obtain the token endpoint
TOKEN_ENDPOINT=$(printf '%s' ${OIDC_CONFIG_JSON} | jq -r ".token_endpoint")
UTC_TIME=$(date -u +%s)
EXP_TIME=$(expr "$UTC_TIME" + 10)
JWT_ID=Un1qu3i0

JSON='{'
JSON=${JSON}$(printf '"iss":"%s"' ${CLIENT_ID})
JSON=${JSON}$(printf ',"sub":"%s"' ${CLIENT_ID})
JSON=${JSON}$(printf ',"aud":"%s"' ${TOKEN_ENDPOINT})
JSON=${JSON}$(printf ',"exp":%s' ${EXP_TIME})
JSON=${JSON}'}'

JSON_HEADER_B64=$(printf '{"alg":"ES256","typ":"JWT"}' | jq -cj | base64 -w0 | tr -d
'\n=' | tr '+/' '-_')

JSON_PAYLOAD_B64=$(printf $JSON | jq -cj | base64 -w0 | tr -d '\n=' | tr '+/' '-_')

JSON_SIGNATURE_ASN1_B64=$(printf '%s.%s' $JSON_HEADER_B64 $JSON_PAYLOAD_B64 | openssl
dgst -sha256 -sign"${PRIVATE_KEY_ES256}" | openssl asn1parse -inform DER | base64 -w0)
JSON_SIGNATURE_HEX=$(printf $JSON_SIGNATURE_ASN1_B64 | base64 -d | sed -n '/INTEGER/p'
| sed 's/.*INTEGER\s*://g' | sed -z 's/[^0-9A-F]//g')
JSON_SIGNATURE_B64=$(printf $JSON_SIGNATURE_HEX | xxd -p -r | base64 -w0 | tr -d '\n='
| tr '+/' '-_')

JWT_ASSERTION=$(printf '%s.%s.%s' $JSON_HEADER_B64 $JSON_PAYLOAD_B64
$JSON_SIGNATURE_B64)

echo $JWT_ASSERTION
Access token private_key_jwt
--insecure is only needed when testing within WIPO premises (because of the
proxy...)
curl \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --data-urlencode "grant_type=client_credentials" \
 --data-urlencode scope="${SCOPE}" \
 --data-urlencode "client_assertion_type=urn:ietf:params:oauth:client-assertion-
type:jwt-bearer" \
 --data-urlencode "client_assertion=${JWT_ASSERTION}" \
 --url "${TOKEN_ENDPOINT}"

APPENDIX D: PUBLIC HAGUE PLATFORM API

Note: additional information will be added to later versions of this document.

